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Abstract. By means of a strong-coupling approach, developed in previous works, we study the quasiparticle
properties in an extended Hubbard model in presence of critical charge fluctuations near a stripe-quantum
critical-point. We show that the quasiparticle dispersion has a kink along the diagonal Brillouin zone
at the energy of the order 50 meV, for realistic values of the parameters. The energy and momentum
distribution curves (EDC, MDC) along the diagonal are also analyzed. The results for the EDC derived
quasiparticle width reveals an anomalous drop in the low-energy scattering rate at the same energy of the
kink. This drop corresponds to a new energy scale in the system that reflects the interaction between the
quasiparticles and the critical charge fluctuations. The results offer a possible interpretation of the ARPES
and photoemission experiments on Bi2212.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.10.Hf Non-Fermi-liquid ground states,
electron phase diagrams and phase transitions in model systems

The knowledge of multiple energy scales in physical
systems provides significant insight into the processes
that govern their low-energy properties. Concerning high-
temperature superconductors, whose unusual properties
are continuously under debate, the possibility to have mul-
tiple energy scales has been well investigated in the su-
perconducting state of Bi2212 throughout the Brillouin
zone. Remarkably, the presence of a second energy scale
has been revealed in ARPES experiments on the diagonal
zone where the superconducting gap vanishes [2,3], with
significant changes both in the spectral lineshape and the
quasiparticle dispersion. Specifically, below Tc a kink in
the dispersion of quasiparticle develops along the diagonal
line at finite energy (� 50±10 meV) resulting in a change
of the quasiparticle velocity up to a factor of two or more.
This effect is enhanced in the underdoped sample and per-
sists above Tc where the kink becomes rather broad. The
electronic structure calculation [1] predicts a linear disper-
sion in this range, but experimental doping, temperature
and k-dependence of the kink dispersion put constraints
on a microscopic theory. Various interpretations on the
origin of the kink have been proposed. A possible inter-
pretation is based on the electron-phonon interaction [4].
A second interpretation is based on the coupling of the
electrons to a magnetic resonance [5–7] and the third one
is simply related to the opening of the superconducting
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gap which is of the order of the kink energy. In this note
we present a possible interpretation of the experimental
data based on the stripe-scenario in which an incommen-
surate charge density wave (ICDW) is proposed as the
source of the quasiparticle scattering that gives origin to
the kink [8]. Within this scenario, we analyze the quasi-
particle properties in an extended Hubbard model in two
dimensions in presence of an ICDW. We report the results
of the MDC (Momentum Distribution Curves) and of the
EDC (Electron Distribution Curves) and discuss the influ-
ence of the stripe order on the evolution of the quasiparti-
cle peak, dispersion and width. Our results give evidence
of a kink in the quasiparticle dispersion along the diagonal
Brillouin zone when charge stripes start to be formed. The
analysis is based on our recent work where the study of
a charge vertex, as a function of the doping and momen-
tum, has shown a singular behavior responsible for a stripe
phase formation [9]. The occurrence of such instability can
be theoretically understood as an interplay between phase
separation (PS) and long-range Coulomb interaction at fi-
nite doping [10]. Recently, various experimental evidences
for the existence of such instability in the phase diagram
of high-Tc cuprates have been obtained by STM [12] and
other experimental techniques (see Ref. [11]). Our results
are not affected by the superconducting gap that is zero
along the diagonal. A direct comparison with experimen-
tal results on Bi2212 is discussed.
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We consider the two-dimensional single-band Hubbard
model, generalized with the inclusion of a long-range
Coulomb interaction, whose Hamiltonian is:

H =
∑

〈i,j〉′,σ tijc
†
iσcjσ − µ

∑
σ

niσ

+ U
∑

i

ni↑ni↓ +
∑

i,j

Vi,jninj , (1)

where c†iσ(ciσ) is an electron creation (annihilation) oper-
ator with spin σ at site i, tij is the hopping up to next-
to-nearest included, µ is the chemical potential, U and
Vi,j are the local and the long-range Coulomb interaction,
respectively.

The model is treated within a strong-coupling per-
turbative approach based on a cumulant expansion
(CE) [13,14]. This expansion leads to the following exact
expression of the Matsubara one-particle Green’s function
G(k, iωn):

G(k, iωn) =
[G0(iωn) + Z(k, iωn)]

1 − tk[G0(iωn) + Z(k, iωn)]
, (2)

where G
(0)
σ (iωn) is the local-Hubbard Green’s function,

the function Z(k, iωn) contains all the irreducible graphs
with two roots, except G0(iωn), which cannot be broken
into two parts by cutting a single line hopping, tk is the
Fourier transform of the hopping.

The physical quantities in which we are interested
are the single particle spectral function and the imagi-
nary part of the self-energy, the last one being related
to the quasiparticle lifetime. The first one is obtained
from equation (2) by taking the analytic continuation
(iωn → ω + iη):

A(k, ω̃) = − 1
π

ImG(k, ω̃)

= − 1
π

ImZ(k, ω̃)
[1 − tk(G0(ω̃) + ReZ(k, ω̃))]2 + (tkIm(k, ω̃))2

,

(3)

where k is the in plane momentum and ω = ω̃+µ, µ being
the chemical potential.

The crucial problem in the CE approach is the deter-
mination of the function Z(k, ω). Being interested in the
effect of charge fluctuations, we consider the approximate
expression of Z(k, ω):

Z(k, iωn) =

β−1
∑

ωn′ ,k′
Γ (k′, iωn′)G(1)(k′ − k, iωn′ − iωn)t2k′−k. (4)

where Γ (k, ω) is the charge vertex function in the particle-
hole channel (whose expression is reported Ref. [19]) and
G(1)(k) is the one-particle Green’s function obtained in
the lowest order cumulant expansion [15], describing two
Hubbard subbands separated by a charge transfer gap. In
conventional Fermi liquid theory, the charge vertex Γ is

a regular function that behaves as ImZ ∝ ω̃2 + (πT 2) for
small ω̃ and T . However, when the vertex function be-
comes singular, a strong k and/or ω dependence gives rise
to anomalous features in the single-particle properties, as
we shall show below. In our previous work, the charge ver-
tex function Γ (k, iωn) has been evaluated within a gen-
eralized random phase approximation (RPA) [9] and we
have shown that its low-energy behavior is given by:

Γ (k′, ω′ → 0) � − 1
Ω(k′) − iγk′ω′ , (5)

where Ω(k) � M(δ) + α(k− qc)2, γk is the inverse relax-
ation time of charge fluctuations. This form of the vertex
function is similar to that obtained in an effective model
for tight-binding electrons coupled to charge and spin fluc-
tuations in reference [16]. At ω′ = 0, the vertex becomes
singular at δ = δc, at the critical vector k′ = qc corre-
sponding to an instability towards ICDW. In particular,
we have found M(δ) ∝ (δ − δc), showing that the dop-
ing determines the distance from the criticality and in-
troduces an energy scale in the system. For the values of
the Hamiltonian parameters in the range of physical in-
terest (U/t = 5 ÷ 8, V/t = 1. ÷ 3.) we have obtained
values of pairs (qc, δc) consistent with the experiments in
Bi2212 near the optimal doping (i.e. δc = 0.12÷ 0.15 and
qc = (π/4,±π/4)÷ (π/2,±π/2)). The components of the
critical vector qc determine the direction of the charge
stripes, while the inverse of its modulus the distance be-
tween them.

In order to investigate the influence of the critical
charge fluctuations on the spectral function, we have com-
puted the imaginary part of Z(k, ω̃) using the low-energy
expression of the vertex function (5). The expression for
ImZ(k, ω̃) and that for the real part, obtained by the
Kramers-Kronig relation, permit us to calculate the spec-
tral function (3) and the imaginary part of the self-energy:

ImΣ(k, ω) = −Im[Z(k, ω) + G0(ω)]−1. (6)

From the last relation, keeping in mind the on-shell equal-
ity that follows from (3)

G0(ω(k)) + ReZ(k, ω(k)) =
1
tk

, (7)

we obtain the on-shell inverse quasiparticle lifetime:

1
τ

= ImΣ(k, ω(k)) � t2kImZ(k, ω(k)), (8)

with t2kImZ(k, ω(k)) � 1.
Now, we use the general formulas obtained above to

discuss the behavior of the single-particle spectral function
near the Fermi surface in presence of critical charge fluc-
tuations. First, we determine the chemical potential corre-
sponding to a fixed value of the doping (δ = (1−n) = 0.12)
by using the one-particle Green function G(1), and to re-
produce the band structure of Bi2212 around optimal dop-
ing we take t′ = −0.25t. For a given set of parameters, the
correction δµ to the chemical potential from the charge
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Fig. 1. Energy distribution curves (EDC) in arbitrary units
(a.u.) at different values of k around kF. The black dark curve
corresponds to k = kF = (1.66, 1.66), the other curves corre-
spond to the values 1.2, 1.3, 1.4, 1.5, 1.7, 1.8, 1.9, 2.0 of k
along the diagonal. The lattice constant is taken a = 1. The
inset shows the Fermi surface cut along the diagonal line in the
first Brillouin zone.

fluctuations is very small, as it will appear in the follow-
ing. The other values of the Hamiltonian parameters (ex-
pressed in units of t) are taken, T/t = 0.01, U/t = 5.
and V/t = 3.. Finally, we take the critical vector qc near
(π/2,±π/2) along the diagonal Brillouin zone. This choice
is made in agreement with the results from angle-scanning-
photoemission on Bi2212 [17] that reveals a modulation
of the charge density wave with a wave-vector along the
diagonal at optimal doping. The general results for the
single-particle spectral function are characterized by the
presence of a coherent peak associated with the quasipar-
ticle near the Fermi surface and an incoherent peak, or
hump, at higher energies. This second peak corresponds
to a shadow band associated with qc (for details see also
Ref. [16]). In the following we focus on the quasiparticle
peak only.

In Figure 1, we plot the quasiparticle peak as a func-
tion of ω̃ for some values of k around kF along the diago-
nal (energy distribution curves or EDCs), and in Figure 2
the quasiparticle peak is plotted as function of k along
the diagonal for ω̃ = 0 (momentum distribution curves or
MDCs). Figure 1 shows that the quasiparticle peak moves
from left to right towards the Fermi energy, loosing spec-
tral weight as it crosses the Fermi level. The loss of spectral
weight along this direction is due to the transfer of spectral
weight to the shadow peak. We also note that the EDC
curves at fixed values of k have an asymmetric Lorentzian
lineshape reflecting the non-trivial ω dependence of the
self-energy. This behavior of the EDC and MDC curves is
in qualitative agreement with ARPES data on Bi2212 in
references [2,3].

To get further information on the quasiparticle, in Fig-
ures 3-4 we plot the quasiparticle spectrum given by the
equation:

[1 − tk(G0(ω̃) + ReZ(k, ω̃))] = 0, (9)

Fig. 2. Momentum distribution curve (MDC) in arbitrary
units (a.u.) for ω̃ = 0 and varying k around kF along the
diagonal. The arrow represents the kF position.

Fig. 3. Quasiparticle dispersion along the nodal Brillouin zone.
The dashed line represents the linear fit of the high and low
energy parts of the dispersion and the arrow the position of
the Fermi momentum.

By looking into Figure 3, we clearly see a feature in the
quasiparticle spectrum dispersing towards the Fermi en-
ergy with a break in the slope near −0.05 eV. This break
is known as a kink in the quasiparticle dispersion, indi-
cating a change in the velocity. This behavior is clearly
different from what one would expect from any electronic
structure calculation. For k near kF and varying normal
to the Fermi surface, one would expect the simple linear
behavior ε(k) = vF (k − kF ) to hold. Similar kinks in the
quasiparticle dispersions have been seen by ARPES ex-
periments in the normal metals and are attributed to the
electron-phonon interaction [18]. An interpretation of data
in Bi2212 in terms of the coupling of electrons to phonons
has also been given in reference [4]. In our model we give
a natural interpretation of the quasiparticle kink in terms
of the scattering of the electrons with a charge collective
mode described by the vertex Γ (k, ω).

In Figure 4 we show the energy width from EDC curves
as a function of binding energy ω̃(k). The data show a
discontinuity in the width of the quasiparticle peak at
the same energy corresponding to the kink in ω̃(k). Be-
sides, since EDC width is interpretable as the inverse
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Fig. 4. Full width of the EDC curves in arbitrary units (a.u.)
as a function of the maximum position ω̃(k) (binding energy).
The dashed line represents a linear fit of the high and low
energy parts of the width. We observe a drop in the linear slope
around −0.05 eV corresponding to the energy of the kink.

Fig. 5. Quasiparticle dispersion along the nodal Brillouin line
for two values of the doping δ = 0.12, 0.1. The straight lines
represents the linear fit of the low-energy part. As shown in the
figure the quasiparticle velocity (i.e. the linear slope) decreases
with doping.

quasiparticle lifetime 1/τ , the results immediately show
a non-Fermi-liquid behavior associated with a linear de-
pendence of the width below and above the kink energy
(dashed line). Other results have been finally obtained at
varying doping. In Figure 5 we report the quasiparticle
spectrum for the values of the doping δ = 0.12, 0.1. When
we decrease the doping, the kink feature slightly moves
to lower binding energies (from –0.04 meV to –0.05 meV)
showing that the energy scale of the kink is related to the
doping. The results in Figure 5 also show that the quasi-
particle velocity (i.e. the linear coefficient) decreases with
doping, in agreement with recent high-resolution photoe-
mission experiments [20] on Bi2212.

Concluding, by using a strong coupling approach based
on a cumulant expansion in an extended two dimen-
sional Hubbard model, we have shown that the anomalous

quasiparticle features experimentally observed in the nor-
mal state of Bi2Sr2CaCu2O8+δ (Bi2212) can be well de-
scribed in terms of the coupling of the charge carriers to an
incommensurate charge density wave (ICDW) with a crit-
ical vector oriented along the diagonal direction. Our re-
sults show that low-energy charge mode contribute to the
formation of a kink in the quasiparticle spectrum along the
nodal direction at energies around 50 meV, in agreement
with ARPES experiments in Bi2212. We have also shown
that the presence of critical charge fluctuations manifests
in a linear behavior on the quasiparticle inverse lifetime as
a function of the binding energy, with a drop in the slope
at the energy of the kink. The analysis of the spectrum
at varying doping shows that the quasiparticle velocity
decreases with δ in agreement with recent photoemission
experiments. We would like to stress that the last feature
is the most difficult to interpret in the other scenarios pro-
posed for the kink and put a stone in favor of the stripe
scenario. It would be interesting to extend the present
analysis to the presence of superconducting quasiparticles
and to include the effect of fluctuating stripes in order to
describe recent experiments on LSCO systems.

We would like to acknowledge Prof. K. Nakagawa and Prof. M.
Grilli for helpful discussions.
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